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LETTER TO THE EDITOR

Reply to Finding the Rate-Determining Step in a Mechanism: Comparing
DeDonder Relations with the “Degree of Rate Control”
INTRODUCTION

In (1), Campbell argues that the degree of rate control,
XRC,i , is a better tool, compared to the use of DeDonder
relations, for assessing which steps in the reaction scheme
limit the overall rate of a stoichiometric reaction. It is true
that situations exist for which DeDonder relations impli-
cate an upper limit for the number of reaction steps that
may limit the overall reaction kinetics. In particular, the re-
versibility, zi , of each irreversible step in a reaction scheme
is equal to zero (where zi is equal to the ratio of the reverse
rate to the forward for step i ); therefore, the DeDonder
approach does not distinguish the relative importance
of each step in this case. This situation is remedied by
Campbell’s degree of rate control. Importantly, however,
there are other aspects of the reaction kinetics where the
DeDonder approach provides essential insight. The follow-
ing concepts, for example, are readily demonstrated using
DeDonder relations (see (2)):

(i) DeDonder relations provide a simple means to deter-
mine the number of kinetic parameters required to calcu-
late the overall reaction rate.

(ii) Kinetic parameters for gaseous reactions are con-
trolled by quasi-equilibria between the reactants and/or
products of the overall reaction with the transition states
of the elementary steps, and they are not determined by
the properties of the stable reaction intermediates.

(iii) Reaction kinetics for surface reaction schemes are
controlled by concept (ii) above, plus one additional kinetic
parameter for each stable surface species that becomes
abundant on the surface.

(iv) DeDonder relations make it possible to calculate
the maximum rate at which a given transition state may
contribute to the overall reaction rate, providing a neces-
sary condition for assessing the participation in the overall
reaction scheme of transition states identified by quantum
chemical calculations.

(v) DeDonder relations provide a convenient means
for deriving rate expressions from reaction schemes for
special cases where a limited number steps are not quasi-
equilibrated.
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It is important to indicate that Campbell’s degree of rate
control (originally proposed in (3)) is a very useful tool
to help identify the kinetically significant steps in a reac-
tion scheme. More generally, however, I would suggest that
DeDonder relations and Campbell’s degree of rate con-
trol are highly complementary tools for analyzing reaction
schemes. In particular, DeDonder relations have enormous
utility for deriving general principles of reaction kinetics for
reaction schemes, and Campbell’s degree of rate control
provides a nice quantitative tool for computing the sensi-
tivities of each step in a reaction scheme when values for
all of the rate constants are available.

In the following sections, we explore some interesting
connections between DeDonder relations and Campbell’s
degree of rate control. These derivations are presented else-
where in greater detail (2, 4).

IDENTIFICATION OF KINETIC PARAMETERS
FROM DEDONDER RELATIONS

According to the formulation of DeDonder (5), the net
rate, ri , for elementary step i is expressed in terms of the
forward rate of the step, Eri , and the affinity for the step, Ai

ri = Eri

[
1− exp

(−Ai

RT

)]
, [1]

where the affinity is equal to minus the change in the Gibbs
free energy with respect to the extent of reaction. The affin-
ity, Ai , can be expressed in terms of the standard state Gibbs
free energies, Go

j , and the activities, aj , of the j reactants
and products of the step

Ai = −
∑

j

υi j G j = −
∑

j

υi j
[
Go

j + RT ln(aj )
]
, [2]

where υi j are the stoichiometric coefficients for the j reac-
tants and products of step i . This relation can be expressed
in terms of the equilibrium constant for the step, Ki,eq:

exp
(−Ai

RT

)
=
∏

j a
υi j

j

Kieq
. [3]
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For convenience, we define a dimensionless variable, zi ,
equal to the exponential of −Ai /RT:

zi = exp
(−Ai

RT

)
=
∏

j a
υi j

j

Kieq
. [4]

The value of zi approaches zero as step i becomes irre-
versible, and zi approaches unity as step i becomes quasi-
equilibrated; therefore, this value of zi may be termed the
reversibility of step i .

Consider the three-step reaction scheme

A
step1

B

B
step2

C

C
step3

D,

where species B and C are reaction intermediates and
the overall reaction is A⇀↽D. The values of zi are equal to

z1 = aB

K1,eqaA

z2 = aC

K2,eqaB
[5]

z3 = aD

K3,eqaC
.

The product of the three values of zi is controlled by the
overall reversibility of the reaction, ztotal:

ztotal = z1z2z3 = aD

KeqaA
. [6]

The activities of intermediates B and C are now expressed
in terms of zi , and the net rates of the three reactions are
given by

r1 = k1aA(1− z1)

r2 = K1,eqk2aAz1(1− z2) [7]

r3 = K1,eqK2,eqk3aAz1z2

(
1− ztotal

z1z2

)
.

The unknown values of z1 and z2 are determined by re-
quiring that the net rates of steps 1, 2, and 3 are equal.
Therefore, the net rate of the overall reaction is again con-
trolled by three-lumped kinetic parameters, KT Si:

r1 = KTS1aA(1− z1)

r2 = KTS2aAz1(1− z2) [8]

r3 = KTS3aAz1z2

(
1− ztotal

z1z2

)
.

It can now be seen for the three-step reaction scheme of
this example that the net rate of the overall reaction is
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controlled by three kinetic parameters, KT Si, that depend
only on the properties of the transition states for the el-
ementary steps relative to the reactants (and possibly the
products) of the overall reaction. We note that the reaction
scheme contains six individual rate constants ki and k−i ,
the product of which must give the equilibrium constant
for the overall reaction. However, it is not necessary to de-
termine values for five linearly independent rate constants
to determine the rate of the overall reaction. In general,
we conclude that the maximum number of kinetic param-
eters needed to determine the net rate of overall reaction
is equal to the number of transition states in the reaction
scheme (equal to 3 in the present case), since each kinetic
parameter is related to a quasi-equilibrium constant for
the formation of each transition state from the reactants
and/or products of the overall reaction (2). To calculate
rates for heterogeneous catalytic reactions, we note that an
additional kinetic parameter is required for each surface
species that is abundant on the catalyst surface. Specifi-
cally, the net rate of the overall reaction is determined by
the intrinsic kinetic parameters KT Si, as well as by the frac-
tion of the surface sites, θ*, that is available for the forma-
tion of the transition states, and the value of θ* is deter-
mined by the extent of site blocking by abundant surface
species.

In short, we note that DeDonder relations allow the
overall reaction kinetics to be expressed in terms of quasi-
equilibrium relations involving transition states, and the
properties of these transition states can be related to ac-
tivation barriers with respect to stable reaction intermedi-
ates. However, by expressing the reaction kinetics in terms
of quasi-equilibria between transition states and the appro-
priate reactants and/or products, we eliminate the need to
estimate the thermodynamic properties of reaction inter-
mediates that are not abundant on the catalyst surface.

SENSITIVITIES OF THE NET RATE TO INDIVIDUAL
RATE CONSTANTS

We again consider the three-step reaction scheme dis-
cussed above. The net rates for the three steps are given
below in the DeDonder form:

r1 = k1aA(1− z1)

r2 = k1

k−1
k2aAz1(1− z2) [9]

r3 = k1

k−1

k2

k−2
k3aAz1z2

(
1− k−1k−2k−3

k1k2k3

aD

z1z2aA

)
.

The sensitivity of the net rate with respect to k1 is de-
termined by first taking the derivative of r1, r2, and r3 with
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respect to k1, as shown below(
∂r1

∂k1

)
kj

=
(
∂r1

∂k1

)
kj ,zi

+
(
∂r1

∂z1

)
ki ,z2

(
∂z1

∂k1

)
kj(

∂r2

∂k1

)
kj

=
(
∂r2

∂k1

)
kj ,zi

+
(
∂r2

∂z1

)
ki ,z2

(
∂z1

∂k1

)
kj

+
(
∂r2

∂z2

)
ki ,z1

(
∂z2

∂k1

)
kj

[10]

(
∂r3

∂k1

)
kj

=
(
∂r3

∂k1

)
kj ,zi

+
(
∂r3

∂z1

)
ki ,z2

(
∂z1

∂k1

)
kj

+
(
∂r3

∂z2

)
ki ,z1

(
∂z2

∂k1

)
kj

,

where kj refers to all rate constants except k1, ki refers to
all rate constants, and zi refers to z1 and z2.

At steady state, the three net rates ri are equal to the
overall rate, r . Therefore, we write(

∂r1

∂k1

)
kj

=
(
∂r2

∂k1

)
kj

=
(
∂r3

∂k1

)
kj

=
(
∂r

∂k1

)
kj

, [11]

which allows determination of the partial derivatives of z1

and z2 with respect to k1(
∂z1

∂k1

)
kj

= −
[
(k2k3+ k3k−1+ k−1k−2)z1− k−1(k3+ k−2)

k1(k2k3+ k3k−1+ k−1k−2)

]
[12](

∂z2

∂k1

)
kj

= [−(k3 + k−2)z2 + k−2] k−1

k1(k2k3 + k3k−1 + k−1k−2)z1
.

We now define the dimensionless sensitivity, s1, of the over-
all rate with respect to k1 as

s1 =
(
∂r

∂k1

)
kj

k1

r
. [13]

Substitution of the relations for ( ∂z1
∂k1
)kj and ( ∂z2

∂k1
)kj into any of

the expressions for the partial derivatives of ri with respect
to k1 gives the sensitivity s1:

s1 = k2k3

(k2k3 + k3k−1 + k−1k−2)(1− z1)
. [14]

In a similar fashion, we may derive an expression for the di-
mensionless sensitivity, s−1, of the overall rate with respect
to k−1 as

s−1 =
(
∂r

∂k−1

)
kj

k−1

r
= −k2k3z1

(k2k3 + k3k−1 + k−1k−2)(1− z1)
.

[15]
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The following expressions for s2, s−2, s3, and s−3 may be
derived according to the steps outlined above

s2 = k2k3z1

(k2k3 + k3k−1 + k−1k−2)(1− z1)

s−2 = −k2k3z1z2

(k2k3 + k3k−1 + k−1k−2)(1− z1)
[16]

s3 = k2k3z1z2

(k2k3 + k3k−1 + k−1k−2)(1− z1)

s−3 = −k2k3ztotal

(k2k3 + k3k−1 + k−1k−2)(1− z1)
.

It is now apparent that s−1, s−2, and s−3 are related to s1, s2,
and s3 by

s−1 = −z1s1

s−2 = −z2s2 [17]

s−3 = −z3s3.

The above relations are specific cases of the more general
result for any elementary step i :

s−i = −zi si . [18]

This result indicates that the sensitivity of the overall rate
to the reverse rate constant for a step depends on the re-
versibility of the step. For example, the sensitivity of the
overall rate to the reverse rate constant is equal to zero for
an irreversible step (zi = 0) and it is equal to the negative
value of the sensitivity of the overall rate to the forward
rate constant for a quasi-equilibrated step (zi = 1).

For this case, we also see that

s2 = z1s1 [19]
s3 = z2s2.

Accordingly, we see that the sensitivity of the overall rate
to the forward rate constant for step 2 depends on the re-
versibility of the previous step 1 that produces the reaction
intermediate used in step 2. Similarly, the sensitivity of the
overall rate to the forward rate constant for step 3 depends
on the reversibility of the previous step 2 that produces the
reaction intermediate used in step 3. In these cases, the sen-
sitivity of the overall rate to the forward rate constant for
a step approaches zero as the previous step that produces
the reaction intermediate becomes irreversible (zi = 0). In
contrast, the sensitivity of the overall rate to the forward
rate constant for a step remains non-zero as the previous
step that produces the reaction intermediate becomes re-
versible (zi > 0).

CONSERVATION OF SENSITIVITY
The above relations suggest a conservation of sensitivity
for the forward and reverse rate constants of a reaction
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scheme that leads to a single overall reaction. Consider the
following sum of sensitivities for the above three-step reac-
tion scheme∑
i=1,3

(si + s−i ) = [(1− z1)+ z1(1− z2)+ z1z2(1− z3)]s1,

[20]

which leads to the result that∑
1,3

(s1 + s−1) = (1− z1z2z3)s1. [21]

The sensitivity s1 was expressed above in terms of (1− z1),
and the value of (1− z1) at steady state is equal to

(1− z1) = k1k2k3aA − k−1k−2k−3aD

k1aA(k2k3 + k3k−1 + k−1k−2)
. [22]

Thus, the sensitivity s1 can be written as

s1 = k1k2k3aA

k1k2k3aA − k−1k−2k−3aD
. [23]

We also note that

z1z2z3 = ztotal = aD

KeqaA
= k−1k−2k−3aD

k1k2k3aA
. [24]

Therefore, we see that∑
1,3

(si + s−i ) =
(

1− k−1k−2k−3aD

k1k2k3aA

)
× k1k2k3aA

k1k2k3aA − k−1k−2k−3aD
= 1. [25]

A more general demonstration of this conservation of
sensitivity is presented elsewhere for reaction schemes that
lead to a single stoichiometric reaction (4).

CONNECTION TO CAMPBELL’S DEGREE
OF RATE CONTROL

Campbell suggests that the kinetic importance of a parti-
cular step in a reaction scheme can be ascertained by
computing the effect on the overall rate of increasing the
forward and reverse rate constants for that step, while main-
taining the same value of the equilibrium constant for the
step. According to Campbell (1, 3), the “degree of rate con-
trol” for step i , XRC,i is equal to

XRC,i = ki

r

(
δr

δki

)
Ki,eq,kj

, [26]
where the equilibrium constant for step i (Ki,eq) and all
other rate constants are held constant.
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We now compute Campbell’s degree of rate control in
terms of the sensitivities for the forward and reverse rate
constants. We compute the change in the overall rate, δr ,
resulting from a change in ki by δki and a change in k−i by
δki /i,eq to maintain the same equilibrium constant

δr =
(
∂r

∂ki

)
kj

δki +
(
∂r

∂k−i

)
kj

δki

Ki,eq
, [27]

where kj are all rate constants other than ki or k−i , as ap-
propriate.

We compute Campbell’s degree of rate control as

XRC,i = ki

r

(
δr

δki

)
Ki,eq,kj

= ki

r

[(
∂r

∂ki

)
kj

+
(
∂r

∂k− i

)
kj

k− i

ki

]
,

[28]

which leads to the following relation

XRC,i = si + s−i . [29]

According to Eq. [18], we can also write

XRC,i = (1− zi )si . [30]

Since we showed earlier in Eq. [25] that the sum of the
sensitivities for the forward and reverse rate constants of a
reaction scheme is equal to unity for a reaction scheme that
leads to a single overall reaction, we now see that the sum
of XRC,i for the steps is also conserved∑

i

XRC,i = 1. [31]

This result is in agreement with the work of Baranski (6)
referenced by Campbell. In particular, Baranski showed for
a series of consecutive steps that if a rate-determining step
exists with XRC,i = 1, then the degree of rate control for all
other steps is equal to zero.

In the above example of a three-step reaction scheme,
the values of XRC,i are equal to

XRC,1 = (1− z1)s1

XRC,2 = z1(1− z2)s1
[32]

XRC,3 = z1z2(1− z3)s1∑
i=1,3

XRC,i = (1− z1z2z3)s1 = 1.

Therefore, we see that Campbell’s degree of rate control,
XRC,i , provides an excellent measure of the sensitivity of
the overall reaction rate to the kinetic parameters for each
step. The value of XRC,i approaches zero as step i becomes
quasi-equilibrated, and the value of XRC,i becomes small as

the previous steps that produce the reaction intermediates
for step i become irreversible.
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CLOSING REMARKS

In summary, DeDonder relations and Campbell’s degree
of rate control are complementary tools for analyzing re-
action schemes; e.g., DeDonder relations have utility for
deriving general principles of reaction kinetics for reaction
schemes, and Campbell’s degree of rate control provides
a quantitative tool for computing the sensitivities of each
step in a reaction scheme when values for all of the rate
constants are available.

Research in heterogeneous catalysis is currently expe-
riencing an explosion in the applications of combinatorial
chemistry and high throughput screening methodologies
toward the discovery of new catalysts. In combination with
these data-based techniques, it is appropriate to employ
knowledge-based techniques to guide the discovery pro-
cess. For example, at some point in the research and de-
velopment process, it becomes useful to supplement these
experimental studies with quantitative analyses of the re-
action kinetics to compare and/or extrapolate the perfor-
mance of different catalytic materials at various reaction
conditions. In this respect, analyses of reaction pathways
on heterogeneous catalysts are facilitated by formulation of
kinetic models of the surface chemistry, since these models
can be used to consolidate reaction kinetics data collected
using various reactants and products over a wide range of
reaction conditions. The kinetic models serve to describe
product distributions obtained from different reactants in
terms of a limited number of kinetic parameters for various
reaction pathways. This small set of kinetic parameters then
becomes a surrogate for the more complex set of reaction
kinetics data, providing a framework to compare quanti-
tatively the performances of different catalysts at different
reaction conditions.

In addition to advances in combinatorial chemistry and
high throughput screening techniques, the reliability of

initial guesses for parameters in kinetic models of cata-
lytic surface chemistry has been significantly improved
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by advances in quantum chemical techniques and density
functional theory, which provide information about the
geometries and energetics of chemical species interacting
with catalytic sites consisting of clusters or periodic ar-
rangements of atoms. These recent advances in computa-
tional techniques, combined with improved computer per-
formance, make it possible to conduct quantum chemical
calculations on more realistic models of active sites and on
more complex reaction intermediates.

In view of the aforementioned advances in combinatorial
chemistry and high throughput screening techniques, com-
bined with advances in the speed and reliability of quan-
tum chemical calculations, we suggest that research in het-
erogeneous catalysis will see a growth in the applications
of reaction kinetics analyses to probe more realistic reac-
tion schemes with better initial guesses for kinetic param-
eters. These analyses will be aided by the judicious use of
DeDonder relations and Campbell’s degree of rate control.
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